Apriori algorithm and game-of-life for predictive analysis in materials science
نویسندگان
چکیده
Experimental data in many domains serves as a basis for predicting useful trends. If the data and analysis are available over the Web this promotes E-Business by connecting clientele worldwide. This paper describes such a predictive tool “QuenchMinerTM” in the domain “Materials Science”. Data mining, more specifically the “Apriori Algorithm”, is used to derive association rules that represent relationships between input conditions and results of domain experiments. This enables the tool to answer questions such as “Given cooling medium and agitation during material heat treatment, predict cooling rate”. This allows users to perform case studies on the Web and use their results to optimize the involved processes, thus increasing customer satisfaction. Another interesting aspect is predicting material microstructure during heat treatment. Microstructure controls material properties such as hardness. Hence its prediction helps in making decisions about materials selection. Microstructure prediction has similarities to an artificial intelligence process called “Game-of-Life”. Some challenges in our work are incorporating domain expert judgement while mining association rules, simulating microstructure evolution under different conditions, and dealing with uncertainty. These challenges and associated research issues are outlined here. To the best of our knowledge, this is the first tool performing Web-based predictive analysis in Materials Science.
منابع مشابه
The Evaluation of the Team Performance of MLB Applying PageRank Algorithm
Background. There is a weakness that the win-loss ranking model in the MLB now is calculated based on the result of a win-loss game, so we assume that a ranking system considering the opponent’s team performance is necessary. Objectives. This study aims to suggest the PageRank algorithm to complement the problem with ranking calculated with winning ratio in calculating team ranking of US MLB. ...
متن کاملIdentifying Important Factors of Arthroplasty in Patients with Degenerative Knee Osteoarthritis Based on Association Rule Mining Approach
Background and Aim: Total Knee Arthroplasty (TKA) aims to reduce the pain and improve the quality of life of patients with progressive osteoarthritis. When the indication of patients' disease is established, this type of surgery should be performed as soon as possible because patients' late attendance increases surgical complications. Therefore, identification of factors influencing the choice ...
متن کاملNGTSOM: A Novel Data Clustering Algorithm Based on Game Theoretic and Self- Organizing Map
Identifying clusters is an important aspect of data analysis. This paper proposes a noveldata clustering algorithm to increase the clustering accuracy. A novel game theoretic self-organizingmap (NGTSOM ) and neural gas (NG) are used in combination with Competitive Hebbian Learning(CHL) to improve the quality of the map and provide a better vector quantization (VQ) for clusteringdata. Different ...
متن کاملNew Approaches to Analyze Gasoline Rationing
In this paper, the relation among factors in the road transportation sector from March, 2005 to March, 2011 is analyzed. Most of the previous studies have economical point of view on gasoline consumption. Here, a new approach is proposed in which different data mining techniques are used to extract meaningful relations between the aforementioned factors. The main and dependent factor is gasolin...
متن کاملApplying a decision support system for accident analysis by using data mining approach: A case study on one of the Iranian manufactures
Uncertain and stochastic states have been always taken into consideration in the fields of risk management and accident, like other fields of industrial engineering, and have made decision making difficult and complicated for managers in corrective action selection and control measure approach. In this research, huge data sets of the accidents of a manufacturing and industrial unit have been st...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- KES Journal
دوره 8 شماره
صفحات -
تاریخ انتشار 2004